Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula
D. Carvalho,
A. Rocha,
M. Gómez-Gesteira and
C. Silva Santos
Applied Energy, 2014, vol. 134, issue C, 57-64
Abstract:
Due to the increasing interest in the prospection of potential sites for the installation of offshore wind farms, it becomes important to extend the tests presented on Carvalho et al. (2014) to offshore areas. For that, the WRF model was used to conduct ocean surface wind simulations forced by different initial and boundary conditions (NCEP-R2, ERA-Interim, NCEP-CFSR, NASA-MERRA, NCEP-FNL and NCEP-GFS) aiming to assess which one of these datasets provides the most accurate ocean surface wind simulation and offshore wind energy estimates. Six near surface wind simulations were performed, each one of them forced by a different initial and boundary dataset. Results were evaluated using data collected at five buoys that measure the wind in the Iberian Peninsula region (Galician coast and Gulf of Cádiz).
Keywords: NCEP-R2; ERA-Interim; NCEP-CFSR; NCEP-FNL; GFS; Offshore winds (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008216
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:134:y:2014:i:c:p:57-64
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.018
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().