EconPapers    
Economics at your fingertips  
 

Design of an optimal process for enhanced production of bioethanol and biodiesel from algae oil via glycerol fermentation

Mariano Martín and Ignacio E. Grossmann

Applied Energy, 2014, vol. 135, issue C, 108-114

Abstract: In this paper, we optimize a process that integrates the use of glycerol to produce ethanol via fermentation within the simultaneous production of biodiesel and bioethanol from algae. The process consists of growing the algae, determining the optimal fraction of oil vs. starch, followed by oil extraction, starch liquefaction and saccharification, to sugars, oil transesterification, for which we consider two transesterification technologies (enzymes and alkali) and the fermentation of sugars and glycerol. The advantage of this process is that the dehydration technologies are common for the products of the glucose and glycerol fermentation. Simultaneous optimization and heat integration is performed using Duran and Grossmann’s model. The fermentation of glycerol to ethanol increases the production of bioethanol by at least 50%. The energy and water consumptions are competitive with other processes that either sell the glycerol or use it to obtain methanol. However, the price for the biofuels is only competitive if glycerol cannot be sold to the market.

Keywords: Biofuels; Biodiesel; Glycerol; Ethanol; Process integration (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008654
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:108-114

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.08.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:108-114