EconPapers    
Economics at your fingertips  
 

Enhancement in electrical performance of thin-film silicon solar cells based on a micro- and nano-textured zinc oxide electrodes

Ze Chen, Xiao-dan Zhang, Jia Fang, Jun-hui Liang, Xue-jiao Liang, Jian Sun, De-kun Zhang, Ning Wang, Hui-xu Zhao, Xin-liang Chen, Qian Huang, Chang-chun Wei and Ying Zhao

Applied Energy, 2014, vol. 135, issue C, 158-164

Abstract: Boron-doped ZnO (BZO) films deposited by metal organic chemical vapor deposition (MOCVD) generally act as transparent conductive oxide films in hydrogenated amorphous silicon (a-Si:H) solar cells and exhibit a high external quantum efficiency (EQE) performance in the short-wavelength region. They, therefore, facilitate efficient use of sunlight in solar cells. However, sharp surface features on the BZO film may result in nano-cracks and voids in the cells. In this study, we devised a process for modifying these sharp features. The BZO films were smoothened by performing a sputtering hydrogen-doped ZnO (HZO) layer using a magnetron sputtering system. The a-Si:H solar cells based on BZO films subjected to this treatment exhibited a higher open-circuit voltage (Voc), fill factor (FF), and efficiency; however, their short-circuit current density (Jsc) decreased slightly. In an attempt to increase the Jsc while maintaining a high electrical performance for the solar cells, we deposited an additional thin BZO film on the sputter-treated one to realize a micro- and nano-textured structure. This strategy succeeded in increasing Jsc and also caused a further improvement in the Voc, FF, and efficiency. As a result, over 10% efficiency of a-Si:H solar cells based on BZO electrodes with a micro- and nano-textured structure was achieved. Moreover, the thickness of the cell is only 300nm.

Keywords: MOCVD-BZO; Micro- and nano-textured structure; Sputtering hydrogen-doped ZnO (HZO); a-Si:H solar cell (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914009209
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:158-164

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.08.097

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:158-164