EconPapers    
Economics at your fingertips  
 

Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source

Wenbin Hao, Xiaojin He and Yongli Mi

Applied Energy, 2014, vol. 135, issue C, 174-181

Abstract: Three kinds of carbon sources obtained from carbon black, bamboo fiber and waste paper were investigated as anode fuels in an intermediate temperature direct carbon fuel cell. The carbon sources were characterized with X-ray photoelectron spectroscopy, thermal gravimetric analysis, etc. The results indicated that the waste paper carbon was more abundant in calcite and kaolinite, and showed higher thermal reactivity in the intermediate temperature range compared with the other two carbon sources. The cell performance was tested at 650°C in a hybrid single cell, using Sm0.20Ce0.80O2−x as the electrolyte. As a result, the cell fed with waste paper carbon showed the highest performance among the three carbon sources, with a peak power density of 225mWcm−2. The results indicated that its inherent impurities, such as calcite and kaolinite, might favor the thermal gasification of renewable carbon sources, which resulted in the enhanced performance of the intermediate temperature direct carbon fuel cell.

Keywords: Direct carbon fuel cell; Renewable carbon; Intermediate temperature; Kaolinite (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008666
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:174-181

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.08.055

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:174-181