Development of thermal energy storage composites and prevention of PCM leakage
Huiqiang Li,
Huisu Chen,
Xiangyu Li and
Jay G. Sanjayan
Applied Energy, 2014, vol. 135, issue C, 225-233
Abstract:
Thermal energy storage composites were developed by incorporating granular phase change materials (PX25 from Rubitherm®) into cement paste. Without prevention, however, a significant amount of phase change material (paraffin) leaked from the PX25 during the fabrication process. To prevent paraffin leakage during fabrication, three types of nano-SiO2 powder (hydrophilic fumed silica (fs1), hydrophobic fumed silica (fs2), and precipitated silica (ps2)) were chosen to modify PX25. The influence of dosage of these modifiers was investigated with reference to PCM leakage during fabrication. Paraffin leakage was eliminated when hydrophobic fs2 or ps2 was used in a 2.3% and 9.0% mass fraction (relative to PX25), respectively. However, hydrophilic fs1 did not prevent leakage of paraffin. Microstructural and mechanical analyses of the thermal energy storage composites were used to analyze the prevention mechanism of hydrophobic nano-powder against paraffin leakage.
Keywords: Phase change material; Cement; Paraffin leakage (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914009143
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:225-233
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.091
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().