A generic model-free approach for lithium-ion battery health management
Guangxing Bai,
Pingfeng Wang,
Chao Hu and
Michael Pecht
Applied Energy, 2014, vol. 135, issue C, 247-260
Abstract:
Accurate estimation of the state-of-charge (SoC) and state-of-health (SoH) for an operating battery system, as a critical task for battery health management, greatly depends on the validity and generalizability of battery models. Due to the variability and uncertainties involved in battery design, manufacturing and operation, developing a generally applicable battery model remains as a grand challenge for battery health management. To eliminate the dependency of SoC and SoH estimation on battery physical models, this paper presents a generic data-driven approach that integrates an artificial neural network with a dual extended Kalman filter (DEKF) algorithm for lithium-ion battery health management. The artificial neural network is first trained offline to model the battery terminal voltages and the DEKF algorithm can then be employed online for SoC and SoH estimation, where voltage outputs from the trained artificial neural network model are used in DEKF state–space equations to replace the required battery models. The trained neural network model can be adaptively updated to account for the battery to battery variability, thus ensuring good SoC and SoH estimation accuracy. Experimental results are used to demonstrate the effectiveness of the developed model-free approach for battery health management.
Keywords: Battery; Health management; State-of-charge; State-of-health; Artificial neural network; Kalman filter (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008708
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:247-260
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.059
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().