EconPapers    
Economics at your fingertips  
 

Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel

Plaban Bora, Lakhya Jyoti Konwar, Jutika Boro, Mayur Mausoom Phukan, Dhanapati Deka and Bolin Kumar Konwar

Applied Energy, 2014, vol. 135, issue C, 450-460

Abstract: Exploration of new non-edible feedstocks for biofuel production and the use of economically favorable conversion technologies could significantly contribute to bioenergy research. In this regard the present investigation aims to highlighten hybrid biofuels (HBFs) prepared from crude vegetable oils of five locally available plant species namely, Gmelina arborea Roxb (GAO), Mimusops elengi Linn (MEO), Acer laurinum Hasskarl (ALO), Thevetia peruviana Schum (TPO) and Mesua ferrea Linn (MFO). This new approach does not involve any chemical reactions and can substantially reduce the production cost of vegetable oil based biofuels. Besides, the HBF systems prepared here can be 100% renewable as they only contain vegetable oil, butanol and ethanol, all products derived from biomass. The naturally occurring mono-, di-glycerides and free fatty acid (FFA)s in crude vegetable oils (or esters in pretreated oils) functioned as surfactants in the formulation of stable fuel systems. The fuel properties of the formulations were affected by the concentrations of these compounds in the vegetable oil. The optimum formulations (oil:butanol:ethanol ratio of 60:30:10) exhibited viscosity (4.7–5.4mm2/s), density (0.86–0.88gm/cm3) and gross calorific values (38.91–39.18MJ/kg) comparable with their corresponding fatty acid methyl esters (FAMEs). Moreover, they show superior cold flow properties than FAMEs. The present investigation suggests that non-edible oil based HBF systems formulated in the study containing ‘bio-based’ and ‘green’ surface active agents in the system offers economically attractive candidature for the future biofuel industry.

Keywords: Non-edible oils; Hybrid biofuels; Biodiesel; Viscosity (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914009374
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:450-460

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.08.114

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:450-460