Clustering analysis of residential electricity demand profiles
Joshua D. Rhodes,
Wesley J. Cole,
Charles R. Upshaw,
Thomas F. Edgar and
Michael E. Webber
Applied Energy, 2014, vol. 135, issue C, 471 pages
Abstract:
Little is known about variations in electricity use at finely-resolved timescales, or the drivers for those variations. Using measured electricity use data from 103 homes in Austin, TX, this analysis sought to (1) determine the shape of seasonally-resolved residential demand profiles, (2) determine the optimal number of normalized representative residential electricity use profiles within each season, and (3) draw correlations to the different profiles based on survey data from the occupants of the 103 homes. Within each season, homes with similar hourly electricity use patterns were clustered into groups using the k-means clustering algorithm. Then probit regression was performed to determine if homeowner survey responses could serve as predictors for the clustering results. This analysis found that Austin homes fall into one of two seasonal groups with some homes using more expensive electricity (from a wholesale electricity market perspective) than others. Regression results indicate that variables such as if someone works from home, hours of television watched per week, and education levels have significant correlations with average profile shape, but might vary across seasons. The results herein also indicate that policies such as time-of-use or real-time electricity structures might be more likely to affect lower income households during some high electricity use parts of the year.
Keywords: Energy; Smart meter data; Residential (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (71)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914009349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:461-471
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.111
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().