Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption
Ana M. López-Sabirón,
Patricia Royo,
Victor J. Ferreira,
Alfonso Aranda-Usón and
Germán Ferreira
Applied Energy, 2014, vol. 135, issue C, 616-624
Abstract:
Until now, a small number of studies have analysed the carbon footprint (CO2 eq. emissions) of the application of Phase Change Materials (PCMs) in conventional Thermal Energy Storage (TES) systems considering different conventional fossil fuels as the source of heat. In those scarce studies, the different environmental impact categories were estimated using, on the one hand, diverse environmental methodologies and, on the other hand, different environmental evaluation methods (the midpoint and endpoint approaches). Despite the fact that several researchers have used the Life Cycle Assessment (LCA) methodology as a tool to estimate the environmental impact of TES systems, there is no unanimity in the scientific community on the environmental evaluation method to be used. As a consequence, research results cannot be easily compared. This article evaluates the introduction of a TES system (using different PCMs) to recover the waste thermal energy released in industrial processes, which can be used in other applications, thereby avoiding fossil fuel consumption by the associated equipment to produce thermal energy. Five different fossil fuels have been considered to generate the 20 case studies that were analysed using the same methodology (LCA) and evaluation method (Global Warming Potential, GWP100, a midpoint approach). The results were used to identify the best cases, considering the environmental benefits that they generate. Additionally, this research indicates that the benefits can be achieved since, in general, the amount of conventional fuels saved is sufficiently large to balance the environmental impact associated with the inclusion of PCMs in conventional TES. Nevertheless, the selection of a PCM can increase or eliminate the environmental benefits obtained.
Keywords: Carbon footprint; Phase Change Material (PCM); Fossil fuel; Thermal energy storage; Energy recovery (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008411
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:135:y:2014:i:c:p:616-624
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.038
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().