EconPapers    
Economics at your fingertips  
 

Laminar flame speed and markstein length characterisation of steelworks gas blends

D. Pugh, A.P. Crayford, P.J. Bowen, O’Doherty, T., R. Marsh and J. Steer

Applied Energy, 2014, vol. 136, issue C, 1026-1034

Abstract: An outwardly propagating spherical flame configuration has been used to characterise the combustion of different blended steelworks gas compositions, under atmospheric ambient conditions. A nonlinear extrapolative technique was used to obtain values of laminar burning speed and Markstein length for combustion with air and change in equivalence ratio. Peak burning speed was shown to reach almost 1ms−1 for the combustion of coke oven gas under marginally rich conditions, and the influence of flame stretch on burning speed also shown to increase with equivalence ratio. The molar fraction of coke oven gas (COG) was then blended in the range 0–15% with four blast furnace gas mixtures (BFG) containing 1–7% H2 fractions, representative of the inherent compositional fluctuation experienced in production. Profiles for change in burning speed resulting from this addition of COG are presented, and the dampening extent of fluctuation resulting from the H2 variation has been quantified. Results are also presented for the relative change in gross calorific value and corresponding Wobbe index of the variable blended gases across the tested limits. Modelled results were generated using the PREMIX coded CHEMKIN-PRO, and the performance of specified chemical reaction mechanisms evaluated relative to the experimental data.

Keywords: Laminar burning velocity; Flame speed; Outwardly-propagating spherical flame; Flame stretch; Blast furnace gas; Coke oven gas (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003973
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:1026-1034

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.04.044

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1026-1034