EconPapers    
Economics at your fingertips  
 

Optimal sampling plan for clean development mechanism lighting projects with lamp population decay

Xianming Ye, Xiaohua Xia and Jiangfeng Zhang

Applied Energy, 2014, vol. 136, issue C, 1184-1192

Abstract: This paper proposes a metering cost minimisation model that minimises metering cost under the constraints of sampling accuracy requirement for clean development mechanism (CDM) energy efficiency (EE) lighting project. Usually small scale (SSC) CDM EE lighting projects expect a crediting period of 10years given that the lighting population will decay as time goes by. The SSC CDM sampling guideline requires that the monitored key parameters for the carbon emission reduction quantification must satisfy the sampling accuracy of 90% confidence and 10% precision, known as the 90/10 criterion. For the existing registered CDM lighting projects, sample sizes are either decided by professional judgment or by rule-of-thumb without considering any optimisation. Lighting samples are randomly selected and their energy consumptions are monitored continuously by power meters. In this study, the sampling size determination problem is formulated as a metering cost minimisation model by incorporating a linear lighting decay model as given by the CDM guideline AMS-II.J. The 90/10 criterion is formulated as constraints to the metering cost minimisation problem. Optimal solutions to the problem minimise the metering cost whilst satisfying the 90/10 criterion for each reporting period. The proposed metering cost minimisation model is applicable to other CDM lighting projects with different population decay characteristics as well.

Keywords: CDM; Sample size determination; Energy efficiency; Lamp failure rate (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007399
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:1184-1192

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.07.056

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1184-1192