Full-scale temperature response function (G-function) for heat transfer by borehole ground heat exchangers (GHEs) from sub-hour to decades
Min Li,
Ping Li,
Vincent Chan and
Alvin C.K. Lai
Applied Energy, 2014, vol. 136, issue C, 197-205
Abstract:
Heat transfer by borehole ground heat exchangers involves diverse time–space scales and thus imposes a significant challenge to geothermal engineers. In order to overcome this challenge, this paper develops an analytical full-scale model from the idea of matched asymptotic expansion. The full-scale model is a composite expression consisting of a composite-medium line-source solution (inner solution), a finite line-source solution (outer solution), and an infinite line-source solution. The full-scale model is first verified by a frequency-decomposition method. Furthermore, the full-scale model is reformulated as a multi-stage model based on Duhamel’s theorem to reduce the computational cost. The multi-stage model combines the three separate solutions in a sequential way, i.e., the inner solution for the short-time scale, the conventional infinite line-source solution for the intermediate time scale, and the outer solution for the long-time scale. Finally, we perform a parametric study on a ground heat exchanger with single U-shaped tube, by which the spacing between U-tube legs, the length-to-radius ratio of borehole, the ratios of thermal diffusivities and conductivities of the ground and backfilling material are analyzed.
Keywords: Borehole ground heat exchanger; Temperature response function; Full-scale model; Composite-medium line-source model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400960X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:197-205
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.09.013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().