Continuous thermophilic biohydrogen production in packed bed reactor
Shantonu Roy,
M. Vishnuvardhan and
Debabrata Das
Applied Energy, 2014, vol. 136, issue C, 58 pages
Abstract:
The present research work deals with the performance of packed bed reactor for continuous H2 production using cane molasses as a carbon source. Maximum H2 production rate of 1.7LL−1h−1 was observed at a dilution rate and recycle ratio of 0.8h−1 and 0.6, respectively which was corresponding to the lowest NADH/NAD+ ratio. This suggests that the utilization of NADH pool for H2 and metabolite production might lead to decrement in NADH/NAD+ ratio. Thus NADH/NAD+ ratio show inverse relation with hydrogen production. The substrate degradation kinetics was investigated as a function of flow rate considering the external film diffusion model. At a flow rate of 245mLh−1, the contribution of external film mass transfer coefficient and first order substrate degradation constant were 55.4% and 44.6% respectively. Recycle ratio of 0.6 improved the hydrogen production rates by 9%. The viable cell count was directly proportional to the recycle ratio (within the range 0.1–0.6). Taguchi design showed the significant influence of the feed pH on continuous H2 production followed by dilution rate and recycle ratio. Thus environmentally friendly and cheaper solid matrix like coconut coir could be efficiently used for thermophilic continuous hydrogen production.
Keywords: Packed bed reactor; NADH/NAD+ ratio; Substrate degradation kinetics; Recycle ratio; Taguchi design; Flow cytometry (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008344
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:51-58
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.031
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().