An efficient Bayesian inversion of a geothermal prospect using a multivariate adaptive regression spline method
Mingjie Chen,
Andrew F.B. Tompson,
Robert J. Mellors,
Abelardo L. Ramirez,
Kathleen M. Dyer,
Xianjin Yang and
Jeffrey L. Wagoner
Applied Energy, 2014, vol. 136, issue C, 619-627
Abstract:
In this study, an efficient Bayesian framework equipped with a multivariate adaptive regression spline (MARS) technique is developed to alleviate computational burdens encountered in a conventional Bayesian inversion of a geothermal prospect. Fast MARS models are developed from training dataset generated by CPU-intensive hydrothermal models and used as surrogate of high-fidelity physical models in Markov Chain Monte Carlo (MCMC) sampling. This Bayesian inference with MARS-enabled MCMC method is used to reduce prior estimates of uncertainty in structural or characteristic hydrothermal flow parameters of the model to posterior distributions. A geothermal prospect near Superstition Mountain in Imperial County of California in USA is used to illustrate the proposed framework and demonstrate the computational efficiency of MARS-based Bayesian inversion. The developed MARS models are also used to efficiently drive calculation of Sobol’ total sensitivity indices. Only top sensitive parameters are included in Bayesian inference to further improve the computational efficiency of inversion. Sensitivity analysis also confirms that water circulation through high permeable structures, rather than heat conduction through impermeable granite, is the primary heat transfer method. The presented framework is demonstrated an efficient tool to update knowledge of geothermal prospects by inversing field data. Although only thermal data is used in this study, other type of data, such as flow and transport observations, can be jointly used in this method for underground hydrocarbon reservoirs.
Keywords: Geothermal prospect; Inversion; Surrogate; Uncertainty; Sensitivity (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914010113
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:619-627
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.09.063
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().