Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts
Aggrey Mwesigye,
Tunde Bello-Ochende and
Josua P. Meyer
Applied Energy, 2014, vol. 136, issue C, 989-1003
Abstract:
In this paper, a numerical investigation of thermal and thermodynamic performance of a receiver for a parabolic trough solar collector with perforated plate inserts is presented. The analysis was carried out for different perforated plate geometrical parameters including dimensionless plate orientation angle, the dimensionless plate spacing, and the dimensionless plate diameter. The Reynolds number varies in the range 1.02×104⩽Re⩽7.38×105 depending on the heat transfer fluid temperature. The fluid temperatures used are 400K, 500K, 600K and 650K. The porosity of the plate was fixed at 0.65. The study shows that, for a given value of insert orientation, insert spacing and insert size, there is a range of Reynolds numbers for which the thermal performance of the receiver improves with the use of perforated plate inserts. In this range, the modified thermal efficiency increases between 1.2% and 8%. The thermodynamic performance of the receiver due to inclusion of perforated plate inserts is shown to improve for flow rates lower than 0.01205m3/s. Receiver temperature gradients are shown to reduce with the use of inserts. Correlations for Nusselt number and friction factor were also derived and presented.
Keywords: Parabolic trough receiver; Perforated plate inserts; Temperature gradients; Thermal performance; Modified thermal efficiency; Thermodynamic performance (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914002682
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:989-1003
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.03.037
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().