EconPapers    
Economics at your fingertips  
 

Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant

Konrad Koch, Brigitte Helmreich and Jörg E. Drewes

Applied Energy, 2015, vol. 137, issue C, 250-255

Abstract: Batch trials for co-digestion of raw sludge and food waste using eleven different mass-based mixtures were performed ranging from 5% to 30%. In contrast to conducting digestion trials as replicates in parallel as commonly done in previous studies, replications were performed successively in each trial to capture the variability in yield caused by a changing composition of the substrates. Trials were conducted four times with the same mixture ratios, but always using a fresh charge of inoculum, raw sludge and food waste. Data fitting was applied to assess the effect of the different mixtures on both the ultimate methane yield and the hydrolysis rate constant. The results revealed that with increasing contributions of food waste, the methane yield of the mixtures increased just due to its higher methane potential. The hydrolysis rate constant in the mixtures with a low contribution of food waste (up to 12.5% mass-based or 35% based on volatile solids) derived in batch experiments were higher than the one observed during the mono-digestion. Hence, co-digestion of food waste holds promise not only due to a higher methane yield, but in particular due to the accelerated methane production rate.

Keywords: Co-digestion; Raw sludge; Food waste; Batch test; Ultimate methane potential; Hydrolysis rate constant (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914010666
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:137:y:2015:i:c:p:250-255

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.10.025

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:137:y:2015:i:c:p:250-255