New kinetic model of coal tar hydrogenation process via carbon number component approach
Fei Dai,
Maoming Gong,
Chunshan Li,
Zengxi Li and
Suojiang Zhang
Applied Energy, 2015, vol. 137, issue C, 265-272
Abstract:
Hydrogenation technology is an important chemical upgrading process for low quality oil such as coal tar. Kinetic modeling for hydrogenation process remains a challenging task because of the large amount of compounds and complex reactions involved. Therefore, a new systematic methodology is proposed in this study to characterize mixture streams for the kinetic modeling of coal tar hydrogenation. The methodology incorporates both lumped method based on boiling point to represent feedstock and a carbon number-based component approach in the form of a structural matrix to characterize products at a molecular level. A mathematical transformation model is built for interrelating the bulk properties and molecular composition of products. A detailed kinetic model for coal tar hydrogenation is constructed based on the reaction pathway networks between lumped feedstock and carbon number-based molecular product. Detailed molecular compositions of the products are obtained from experiments to provide a basis for estimating the parameters of the kinetic model. The proposed method is verified by experiment results, which are consistent with predicted values.
Keywords: Coal tar; Kinetic model; Hydrogenation process; Carbon number component (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914010496
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:137:y:2015:i:c:p:265-272
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.10.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().