The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine
Nguyen Ba Hung,
Ocktaeck Lim and
Norimasa Iida
Applied Energy, 2015, vol. 137, issue C, 385-401
Abstract:
An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from Pin=1.1bar to Pin=1.6bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (Pin=1.6bar), the engine knocking problem is occurred. Adjusting spring stiffness from k=2.9N/mm to k=14.7N/mm is also considered one of useful solutions for reducing the peak in-cylinder temperature in HCCI mode as well as avoiding engine knock. Besides, the change of spark timing is suggested as a benefic method to help the control of the SI-HCCI transition to be more convenient. To get a successful SI-HCCI transition with reducing of peak temperature in HCCI mode as well as avoiding engine knock, the simulation results show that the engine should be operated with following conditions: equivalence ratio ϕ=0.7, engine load RL=180Ω, intake temperature Tin=400K, intake pressure Pin=1.2bar, spark timing in SI mode xig=3mm and spring stiffness k=14.7N/mm.
Keywords: Linear engine; Equivalence ratio; Intake pressure; Intake temperature; Spark timing; Spring stiffness (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914010411
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:137:y:2015:i:c:p:385-401
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.10.001
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().