A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy
Yujie Wang,
Chenbin Zhang and
Zonghai Chen
Applied Energy, 2015, vol. 137, issue C, 427-434
Abstract:
The accurate state-of-charge (SOC) estimation and real-time performance are critical evaluation indexes for Li-ion battery management systems (BMS). High accuracy algorithms often take long program execution time (PET) in the resource-constrained embedded application systems, which will undoubtedly lead to the decrease of the time slots of other processes, thereby reduce the overall performance of BMS. Considering the resource optimization and the computational load balance, this paper proposes a multi-model switching SOC estimation method for Li-ion batteries. Four typical battery models are employed to build a close-loop SOC estimation system. The extended Kalman filter (EKF) method is employed to eliminate the effect of the current noise and improve the accuracy of SOC. The experiments under dynamic current conditions are conducted to verify the accuracy and real-time performance of the proposed method. The experimental results indicate that accurate estimation results and reasonable PET can be obtained by the proposed method.
Keywords: State-of-charge; Battery model; Multi-model switching strategy; Extended Kalman filter (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914010848
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:137:y:2015:i:c:p:427-434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.10.034
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().