EconPapers    
Economics at your fingertips  
 

Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime

Robert L. Fares and Michael E. Webber

Applied Energy, 2015, vol. 137, issue C, 482-489

Abstract: In this paper, we use experimental data collected from an Austin, Texas smart grid test bed with a system-level battery energy storage model to assess the lifetime of batteries in a microgrid operating in islanded mode during a distribution-level outage. We consider a hypothetical microgrid consisting of 21 single-family detached homes and three transformer-level community energy storage (CES) battery units ranging in size from 25kWh to 75kWh. To describe the performance of CES batteries, we implement a dynamic behavioral circuit model capable of describing voltage transients and rate-capacity effects. We use one-minute electricity production and consumption data collected from the smart grid test bed in 2012 to assess how the timing of an electric outage affects the islanding lifetime of a residential microgrid. We contrast our results with the average outage duration reported by U.S. electric utilities to quantify how often a residential microgrid could withstand a typical outage. Our results show that increasing the amount of rooftop PV in a residential microgrid does not significantly increase how often it can withstand an average-duration outage. However, combining PV with CES extends the median islanding lifetime by up to 11.6h during morning outages. Based on our results, 50kWh CES provides the best tradeoff between the cost of a CES system and its reliability benefit, allowing downstream loads to withstand an average-duration outage approximately 93% of the time.

Keywords: Energy storage; Microgrid; Smart grid; Solar; Photovoltaics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:137:y:2015:i:c:p:482-489

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.04.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:137:y:2015:i:c:p:482-489