EconPapers    
Economics at your fingertips  
 

Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management

Kyoung Ok Lee, Mario A. Medina, Erik Raith and Xiaoqin Sun

Applied Energy, 2015, vol. 137, issue C, 699-706

Abstract: The thermal performance of building walls integrated with phase change materials (PCM) was evaluated in terms of heat flux reduction and heat transfer time delay. To fully melt and solidify over daily cycles, PCMs must be incorporated as thin layers placed longitudinally within the walls. The thin PCM layer was integrated into the wall via a thermal shield, whereby the PCM was contained in thin sealed polymer pouches, arranged in sheets laminated with aluminum foil on both sides. This system is herein referred to as “PCM thermal shield (PCMTS)”. The optimal location of the PCMTS within the wall cavities is critical for heat transfer reduction and management. The thermal performance of south and west facing walls with and without PCMTS was evaluated experimentally using two identical test houses. The PCMTS was installed at various depths, one at a time, within the wall cavities. Each location depth was numbered from 1 to 5 starting at next to the wallboard surface facing the wall cavity (location 1) and proceeding to the exterior side of cavity at intervals of 1.27cm. The results showed that the optimal location for a PCMTS in the south wall was location 3 (2.54cm from the wallboard), while the optimal location for a PCMTS in the west wall was location 2 (1.27cm from the wallboard). At these locations, the peak heat flux reductions were 51.3% and 29.7% for the south wall and the west wall, respectively. The maximum peak heat flux time delays were 6.3h for location 1 in the south wall and 2.3h for location 2 in the west wall. The maximum daily heat transfer reductions were 27.1% for location 3 in the south wall and 3.6% for location 5 in the west wall.

Keywords: Phase change materials (PCM); Thermal energy storage; Wall heat transfer; Building enclosure; Construction materials (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914009428
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:137:y:2015:i:c:p:699-706

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.09.003

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:137:y:2015:i:c:p:699-706