EconPapers    
Economics at your fingertips  
 

Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems

Rodrigo Llopis, Daniel Sánchez, Carlos Sanz-Kock, Ramón Cabello and Enrique Torrella

Applied Energy, 2015, vol. 138, issue C, 133-142

Abstract: International agreements will restrict in the near future the use of high-GWP refrigerants in Europe. These restrictions will favour the implantation of refrigeration systems with low-GWP fluids, especially in applications with high leakage rate. To clarify possible solutions that accomplish the forthcoming F-Gas Regulation, we present simplified models of five two-stage vapour compression refrigeration systems and evaluate them with low-GWP refrigerants (HFC, HFO and naturals). We analyse the energy performance over a wide range of evaporating and environment temperatures and present the TEWI analysis under a same scenario, typical of a centralized commercial refrigeration application. We conclude that, for high-GWP refrigerants, direct emissions have greater weight in TEWI than the indirect ones, so future solutions might be based on low-GWP fluids, in some cases with risk of toxicity or flammability. We observe the indirect two-stage systems (cascades) with CO2 as low temperature fluid are promising solutions, especially for warm regions.

Keywords: Cascade; Two-stage; Low GWP; TEWI; Energy efficiency; R152a (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914011192
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:138:y:2015:i:c:p:133-142

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.10.069

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:138:y:2015:i:c:p:133-142