EconPapers    
Economics at your fingertips  
 

Design and performance prediction of radial ORC turboexpanders

Daniele Fiaschi, Giampaolo Manfrida and Francesco Maraschiello

Applied Energy, 2015, vol. 138, issue C, 517-532

Abstract: In this paper, a zero-dimensional model for the design of radial turbo-expanders for ORC applications is discussed, with special reference to the estimation of losses and efficiency; a comparison between different fluids (R134a, R1234yf, R236fa, R245fa, Cyclohexane, N-Pentane) is presented and discussed, referring to a typical small-size application (50kW). In the model, different methods for the design of radial turbines are screened, with special attention to the estimation of losses, for which correlations from literature are used. Real Equations Of State (EOS) are applied to the expansion process in place of the traditionally adopted Mach relationships for ideal gas, which is a significant advancement for modeling organic fluids in ORC, often operating near to critical conditions. The results show that the total to total efficiency of the designed machines range between 0.72 and 0.80, depending on the considered fluid. Generally, higher efficiency (1.5–2.5% points) can be achieved adopting backswept-bladed rotors. The most significant losses come from the rotor secondary flows, due to the high curvature of blade profiles combined to the large pressure gradient. The best performing fluids are R236fa and R245fa, followed by R134a and R1234yf.

Keywords: Radial turbine design; Expansion efficiency losses; Off design; Micro-ORC (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914011027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:138:y:2015:i:c:p:517-532

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.10.052

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:138:y:2015:i:c:p:517-532