A way of achieving a low $/W and a decent power output from a thermoelectric device
Hoon Kim and
Woochul Kim
Applied Energy, 2015, vol. 139, issue C, 205-211
Abstract:
While most research concerning thermoelectrics has focused on the enhancement of the thermoelectric figure of merit, zT, the $/W is a direct indication of its practical use. It is suggested that in the conventional device architecture, it is better to reduce thermoelectric material consumption rather than to increase zT for higher conversion efficiency, i.e., higher power output with given heat input for lower costs, in certain cases. As a result of this, a thermoelectric device with low $/W suffers from its low power output. Here, we present another way to lower the $/W value, while maintaining a decent power output of a thermoelectric device by changing the device architecture. In the analytical expression which we deduced, we demonstrated that the $/W value can be reduced to around 10% while maintaining ∼65–70% of the maximum possible power output with a given zT. The device architecture we propose should be useful to recover low quality waste heat, which is abundant and could be harvested as long as the $/W value is low enough in general.
Keywords: Thermoelectrics; $/W; Device architecture (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914012021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:139:y:2015:i:c:p:205-211
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.11.040
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().