Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks
Qun Chen,
Rong-Huan Fu and
Yun-Chao Xu
Applied Energy, 2015, vol. 139, issue C, 92 pages
Abstract:
Electrical circuit analogy is an effective method for the performance analysis of various heat transfer processes, whereas there is no equivalent thermal circuit for heat exchanger networks (HENs). In view of this limitation, and based on the concept of entransy-dissipation-based thermal resistance (EDTR), we introduce an equivalent thermal circuit to represent the heat transfer process in a heat exchanger, and then analyze the temperature variations of all the working fluids in each heat exchanger to establish the equivalent thermal circuits for such three basic layouts of HENs as multiple-loop, series, and parallel. The combination of these equivalent thermal circuits gives the overall equivalent thermal circuit for any HEN consisting of the three basic layouts. Accordingly, the inherent relationships, i.e., the constraint equations, of all the parameters in a HEN are built by circuitous philosophy. Based on these constraint equations together with the Lagrange multiplier method, we propose a mathematical method for the optimization of heat transfer performance in HENs. Finally, as an example, the heat transfer processes in a district heating system is analyzed and optimized by the newly proposed equivalent thermal circuit and the corresponding optimization method to show the applications.
Keywords: Heat exchanger network; Electrical analogy; Equivalent thermal circuit; Optimization; Entransy (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914011702
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:139:y:2015:i:c:p:81-92
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.11.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().