EconPapers    
Economics at your fingertips  
 

Application of numerical methods for predicting energy transport in earth contact systems

J. Ward MacArthur, George D. Meixel and Lester S. Shen

Applied Energy, 1983, vol. 13, issue 2, 156 pages

Abstract: Methods for analysing conductive heat flow with applications to underground earth contact systems are reviewed. A discussion and comparison of both the finite difference and finite element methods are presented. The effect of domain discretisation on accuracy for both methods is presented. One- and two-dimensional models are derived and used to solve selected problems. The results for various discretisation domains are compared and constrasted. The application of both the finite difference and finite element approaches to the analysis of heat transfers in an underground building is given. Recommendations are made to aid in the selection of the numerical techniques that are the most appropriate for analysing conductive heat flow problems. Finally, a statement is made on the analysis of the three-dimensional heat and moisture transport problem associated with underground earth contact systems.

Date: 1983
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0306-2619(83)90005-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:13:y:1983:i:2:p:121-156

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:13:y:1983:i:2:p:121-156