EconPapers    
Economics at your fingertips  
 

Performance evaluation of power demand scheduling scenarios in a smart grid environment

John S. Vardakas, Nizar Zorba and Christos V. Verikoukis

Applied Energy, 2015, vol. 142, issue C, 164-178

Abstract: Smart grid technology is considered as the ultimate solution to challenges that emerge from the increasing power demands, the subsequent increase in pollution, and the outmoded power grid infrastructure. The successful implementation of the smart grid is mainly driven by the utilization of modern communication technologies, which aim at the provision of advanced demand side management mechanisms, such as demand response. In this paper, we present and analyze four power-demand scheduling scenarios that aim to reduce the peak demand in a smart grid infrastructure. The proposed scenarios consider that each consumer is equipped with a certain number of appliances of different power demands and different operational times, while the percentage of consumers that agree to participate in the demand scheduling program is also incorporated in our models. We provide the analysis for the determination of the peak demand in a residential area, based on recursive formulas. The proposed analysis is validated through simulations; the accuracy of the analytical models is found to be quite satisfactory. Moreover, we unveil the consistency and necessity of the proposed scenarios and corresponding analytical models.

Keywords: Smart grid; Power demand; Demand scheduling; Performance evaluation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914013178
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:142:y:2015:i:c:p:164-178

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.12.060

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:142:y:2015:i:c:p:164-178