EconPapers    
Economics at your fingertips  
 

Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming

Vikram Menon, Aayan Banerjee, Julian Dailly and Olaf Deutschmann

Applied Energy, 2015, vol. 149, issue C, 175 pages

Abstract: A computational model to investigate proton-conducting Solid-Oxide Fuel Cells (SOFCs) with direct internal reforming is developed. The numerical framework employs a 42-step elementary heterogeneous mechanism for Ni catalysts, using mean-field approximation. Mass transport through the porous media is described by the dusty gas model (DGM). Electrochemical parameters are deduced by reproducing two sets of experimental data, via the non-linear Butler–Volmer equation. A simple 1-D energy balance model is used to predict temperature profiles. The performance of the cell is analyzed by assuming the co-flow planar cell to be adiabatic. Simulations are carried out to understand the influence of various operating conditions on temperature distribution, species transport, and electrochemistry in the cell. The effect of dividing the anode into four zones, with different specific catalytic areas, on macroscopic performance parameters is investigated.

Keywords: Solid Oxide Fuel Cell (SOFC); Proton conducting; Direct internal reforming; Numerical modeling; Reaction kinetics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915003219
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:149:y:2015:i:c:p:161-175

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.03.037

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:149:y:2015:i:c:p:161-175