EconPapers    
Economics at your fingertips  
 

Synthesis and electrochemical properties of nickel–manganese oxide on MWCNTs/CFP substrate as a supercapacitor electrode

Ya-Hao Li, Qing-Yu Li, Hong-Qiang Wang, You-Guo Huang, Xiao-Hui Zhang, Qiang Wu, Hong-Quan Gao and Jian-Hong Yang

Applied Energy, 2015, vol. 153, issue C, 78-86

Abstract: Ultra-small nickel–manganese oxide/multi-wall carbon nanotubes/carbon fiber paper (NMC) composite with 3D porous structure for supercapacitor electrode material was synthesized by an electrochemical deposition process. The MWNCTs depositing on the current collector carbon fiber paper (CFP) via chemical vapor deposition (CVD), as a substrate with high surface to support nickel–manganese oxide, enhance the electrical conductivity of the oxides. These composite was characterized by scanning electron microscope, transmission electron microscope, X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The electrochemical properties of as-prepared composites are also investigated. The results indicate that MWCNTs/CFP composite is a wonderful conductive substrate for supporting metal oxide and NMC possesses wonderful structural and electrochemical properties, which makes NMC a wonderful material for developing supercapacitor electrodes with high electrochemical properties.

Keywords: Supercapacitor; 3D carbon structure; Nickel–manganese oxide; Nickel–manganese oxide/MWCNTs/CFP composite (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914010034
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:153:y:2015:i:c:p:78-86

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.09.055

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:153:y:2015:i:c:p:78-86