EconPapers    
Economics at your fingertips  
 

Modeling industrial loads in non-residential buildings

A. Vaghefi, Farbod Farzan and Mohsen A. Jafari

Applied Energy, 2015, vol. 158, issue C, 378-389

Abstract: Industrial loads in non-residential buildings have significantly contributed in total energy use throughout the world. This paper aims to develop a data-driven risk-based framework to predict and optimally control industrial loads in non-residential buildings. In the proposed framework, first, a set of predictive analytics tools are employed to identify the patterns of industrial loads over time. This also includes a high-dimensional clustering model to allocate industrial load profiles into smaller groups with less variability and same patterns. Once the patterns of industrial loads are identified, then a classification model is implemented to estimate the best class that matches with any new load profiles. Ultimately, the proposed framework provides a risk-based model to calculate and evaluate the total risk of energy decisions for the next day. This is coupled with a utility function structure to help decision makers to take best demand-side actions. The efficiency of the proposed model is investigated through a real world use case.

Keywords: Industrial load; Predictive analytics; Cost-based risk model; High-dimensional clustering; Generalized Linear Model (GLM) (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915010132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:158:y:2015:i:c:p:378-389

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.08.077

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:378-389