Residential emissions reductions through variable timing of electricity consumption
A.R. Harris,
Michelle Marinich Rogers,
Carol J. Miller,
Shawn P. McElmurry and
Caisheng Wang
Applied Energy, 2015, vol. 158, issue C, 484-489
Abstract:
A real-time electricity emissions estimating tool, the Locational Marginal Price Emissions Estimation Method (LEEM), is assessed for its ability to reduce emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), global warming potential measured as carbon dioxide equivalent (CO2e), mercury (Hg), and lead (Pb) on a residential scale. Through LEEM, residential electricity use can be shifted to low emissions times of day. In the study area of Michigan, USA emissions from five types of appliances (hot water heater, refrigerator defrost, dishwasher, clothes washer, and clothes dryer) were calculated to be theoretically reduced by 21–35% annually through a “best-case” application of LEEM. Annual emissions of the five pollutants, SO2, NOx, CO2e, Hg, and Pb, can be reduced across the state by 429,000, 110,000, 87,240,000, 2.21, and 4.53 pounds, respectively – all without a reduction in the electricity used in the period of study. Despite different fuel mixes, similar emissions reductions were calculated for other regions of the country, as well.
Keywords: Emissions; Electricity; Residential; Demand response; Michigan; Climate (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915009757
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:158:y:2015:i:c:p:484-489
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.042
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().