Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant
Wei He,
Yang Wang and
Mohammad Hasan Shaheed
Applied Energy, 2015, vol. 158, issue C, 584-596
Abstract:
This paper presents a maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) based osmotic power generator. Inspired by the well-known MPPT in photovoltaic (PV) array, two algorithms, perturb & observe (P&O) and incremental mass-resistance (IMR) method, are investigated. Using a series of simulations, both the algorithms are demonstrated to be capable of tracking the maximum power point (MPP) and capturing the transitions between varied MPPs due to the fluctuations of operating temperature. However, in both cases the trade-off between the rise time and the oscillation is found requiring further consideration on the selection of the step-size for perturbation pressure or incremental pressure. In order to improve the performance of the MPPT, furthermore, an optimum model-based controller (OMC) is used to estimate the initial optimum pressure for the MPPT in a scale-up PRO process. It is found that with OMC, the performance of the MPPT is improved significantly. Finally, a strategy to operate and coordinate the MPPT and OMC to deal with the rapid variations of the salinities are proposed and evaluated in terms of individual variation of the concentration or flow rate and co-variation of the both. The simulations demonstrate the preferred performance of the proposed strategy to adjust the operation subject to the rapid changes of the salinities.
Keywords: Pressure retarded osmosis; Maximum power point tracking; Model-based control; Salinity variation; Temperature fluctuation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915009927
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:158:y:2015:i:c:p:584-596
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.059
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().