Stochastic optimization models for energy management in carbonization process of carbon fiber production
Hamid Khayyam,
Minoo Naebe,
Alireza Bab-Hadiashar,
Farshid Jamshidi,
Quanxiang Li,
Stephen Atkiss,
Derek Buckmaster and
Bronwyn Fox
Applied Energy, 2015, vol. 158, issue C, 643-655
Abstract:
Industrial producers face the task of optimizing production process in an attempt to achieve the desired quality such as mechanical properties with the lowest energy consumption. In industrial carbon fiber production, the fibers are processed in bundles containing (batches) several thousand filaments and consequently the energy optimization will be a stochastic process as it involves uncertainty, imprecision or randomness. This paper presents a stochastic optimization model to reduce energy consumption a given range of desired mechanical properties. Several processing condition sets are developed and for each set of conditions, 50 samples of fiber are analyzed for their tensile strength and modulus. The energy consumption during production of the samples is carefully monitored on the processing equipment. Then, five standard distribution functions are examined to determine those which can best describe the distribution of mechanical properties of filaments. To verify the distribution goodness of fit and correlation statistics, the Kolmogorov–Smirnov test is used. In order to estimate the selected distribution (Weibull) parameters, the maximum likelihood, least square and genetic algorithm methods are compared. An array of factors including the sample size, the confidence level, and relative error of estimated parameters are used for evaluating the tensile strength and modulus properties.
Keywords: HT furnace energy management; Stochastic optimization models; Genetic algorithm; Convex Hull; Mixed integer linear programming; Carbonization process (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915009332
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:158:y:2015:i:c:p:643-655
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.008
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().