The optimization of a hybrid energy storage system at subzero temperatures: Energy management strategy design and battery heating requirement analysis
Ziyou Song,
Heath Hofmann,
Jianqiu Li,
Jun Hou,
Xiaowu Zhang and
Minggao Ouyang
Applied Energy, 2015, vol. 159, issue C, 576-588
Abstract:
This paper presents a thermal analysis of a semi-active battery/supercapacitor (SC) hybrid energy storage system (HESS), which is used in electric vehicles (EVs), at subzero temperatures. In subzero temperature environments, EVs suffer a dramatic driving range loss due to the energy and power capability reduction of LiFePO4 batteries, as well as severe battery degradation due to Li plating. This will increase the system operation cost because the battery pack needs to be changed frequently. Based on a novel degradation model of LiFePO4 batteries, which is validated over a wide temperature range, a near-optimal energy management strategy of the HESS for on-line use is proposed using the dynamic programming (DP) approach, which minimizes the operation cost (the electricity and the battery fade costs) over a typical China Bus Drive Cycle (CBDC). The convective heating method is integrated into the DP process. Finally, the required heating of the HESS at subzero temperatures over multi-CBDC is analyzed by evaluating the system operation cost. Simulation results show that the heating process becomes increasingly necessary with increased driving range, battery price, and heating efficiency, as well as decreasing environment temperature.
Keywords: Electric city bus; Hybrid energy storage system; Battery degradation; Subzero temperatures; Thermal analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915010569
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:159:y:2015:i:c:p:576-588
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.120
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().