Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong
K.F. Fong and
C.K. Lee
Applied Energy, 2015, vol. 160, issue C, 793-801
Abstract:
The energy and environmental merits of three types of internal-combustion-engine primed trigeneration (ICEPT) systems were investigated when compared with a conventional chilled water system powered by the grid electricity for use in a high-rise office building in Hong Kong. With the employment of the ICEPT systems, the year-round total electricity demand from the building was reduced by at most 10.4% for the natural-gas-fueled one. However, the saving in the total primary energy consumption (PEC) only ranged from 1.7% to 6.8% with the diesel-oil-fueled system being the best although for all the three types of ICEPT systems more than 70% of the energy from the fuel had been utilized. The huge difference in the coefficient of performance (COP) between the absorption chiller and the vapor-compression chiller was the main cause which impaired the benefit of recovering the waste heat to provide space cooling. The total carbon dioxide emission (CDE) varied widely with the types of fuels adopted with a maximum of 26.7% for the natural-gas-fueled system which was due to the lower carbon dioxide emission index of natural gas as compared to other fuel types. The overall ranking of the ICEPT systems depended on the weighing between energy and environmental merits.
Keywords: Trigeneration; Absorption chiller; Vapor-compression chiller; Primary energy consumption; Carbon dioxide emission; Energy utilization factor (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914012288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:160:y:2015:i:c:p:793-801
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.11.059
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().