EconPapers    
Economics at your fingertips  
 

Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine

Thomas Lattimore, Chongming Wang, Hongming Xu, Miroslaw L. Wyszynski and Shijin Shuai

Applied Energy, 2016, vol. 161, issue C, 256-267

Abstract: Exhaust gas recirculation (EGR) is a well known technique for suppressing knock and reducing nitrous oxide (NOx) emissions in spark-ignition engines, and this technique is now receiving more attention because of the negative effect of EGR on engine particulate emissions. This paper investigates the effect of EGR on engine combustion (in-cylinder pressure and temperature, mass fraction burned (MFB), knock limited maximum brake torque (KLMBT) spark timing, net indicated specific fuel consumption (ISFCnet), exhaust gas temperature) and emissions (NOx, unburned hydrocarbon (HC), particulate matter (PM)) in a direct injection spark ignition (DISI) engine. The tests were carried out in a single-cylinder DISI research engine with engine loads between 5.5 and 8.5bar indicated mean effective pressure (IMEP) and various EGR ratios of up to 13%. The results show that by adding 12% EGR, the KLMBT spark timing could be advanced by 8 crank angle degrees (CAD) which resulted in a 4.1% fuel consumption reduction at 7.0bar IMEP. EGR addition generally increased the accumulation mode particles and reduced the nucleation mode particles.

Keywords: EGR; Combustion; DISI; Emissions; Particulates (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915011897
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:161:y:2016:i:c:p:256-267

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.09.080

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:256-267