EconPapers    
Economics at your fingertips  
 

Potential of artificial neural networks to predict thermal sensation votes

Jörn von Grabe

Applied Energy, 2016, vol. 161, issue C, 412-424

Abstract: If occupants of buildings are offered possibilities to interact with the building’s equipment elements – such as with windows – in order to optimize their individual environment, these interactions will influence the energy consumption of the building. Therefore, during the design of the building, e.g. by building simulations, these interactions need to be predicted if the energy consumption of the building is to be optimized.

Keywords: Thermal sensation; Prediction; Artificial neural network; Predicted mean vote; Occupant behavior (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191501288X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:161:y:2016:i:c:p:412-424

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.10.061

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:412-424