EconPapers    
Economics at your fingertips  
 

A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads

João Soares, Mohammad Ali Fotouhi Ghazvini, Zita Vale and P.B. de Moura Oliveira

Applied Energy, 2016, vol. 162, issue C, 1074-1088

Abstract: In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing.

Keywords: Electric vehicles; Multi-objective optimization; Parallel computing; Pareto front; Particle swarm optimization; Smart grid (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915014312
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:1074-1088

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.10.181

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1074-1088