Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform
Hongwen He,
Rui Xiong and
Jiankun Peng
Applied Energy, 2016, vol. 162, issue C, 1410-1418
Abstract:
To develop an advanced battery estimation unit for electric vehicles application, the state-of-charge (SoC) estimation is proposed with an unscented Kalman filter (UKF) and realized with the RTOS μCOS-II platform. Kalman filters are broadly used to deploy various battery SoC estimators recently. Herein, an UKF algorithm has been employed to develop a systematic adaptive SoC estimation framework. Compared with traditional used extended Kalman filter, it uses an unscented transform to deal with the state estimation problem, thus it has the potential to achieve third order accuracy of the Taylor expansion for tracking posterior estimate of the inner inhabited state. Beneficial from it, the SoC estimation accuracy has been improved with higher tracking accuracy and faster convergence ability. To further evaluate and verify the performance of the proposed online SoC estimation approach, a battery-in-loop platform is built and the SoC estimation is calculated with a RTOS μCOS-II platform. The analog acquisition, communication system and SoC estimation algorithms were programmed, the performance of the proposed SoC estimation with UKF algorithm was finally investigated. The battery management system with UKF algorithm and RTOS μCOS-II platform has good performance and it can apply for electric vehicles.
Keywords: Electric vehicles; SoC estimation; Unscented Kalman filter; Battery management system; Battery-in-the-loop (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915001579
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:1410-1418
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.01.120
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().