A novel time-of-use tariff design based on Gaussian Mixture Model
Ran Li,
Zhimin Wang,
Chenghong Gu,
Furong Li and
Hao Wu
Applied Energy, 2016, vol. 162, issue C, 1530-1536
Abstract:
This paper proposes a novel method to design feasible Time-of-Use (ToU) tariffs for domestic customers from flat rate tariffs by clustering techniques. The method is dedicated to designing the fundamental window patterns of ToU tariffs rather than optimising exact prices for each settlement period. It makes use of Gaussian Mixture Model clustering technique to group half-hour interval flat rate tariffs within a day into clusters to determine ToU tariffs. Two groups of ToU are designed following the variations in energy prices and system loading demand respectively. With a number of price-oriented and load-oriented ToU tariffs, the investigation is further carried out to explore the effects of these ToU tariffs on domestic demand response (DR), especially in terms of energy cost reduction and peak shaving. The DR in this paper is assumed to be enabled by household storage battery and the objective of the DR in response to each ToU tariff is to minimise the electricity bills for end customers and/or mitigate network pressures. An example study in the UK case is also carried out to demonstrate the effectiveness of the proposed methods.
Keywords: Time-of-use tariff; Clustering; Demand response; Benefit quantification; Energy storage (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915002482
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:1530-1536
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.02.063
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().