Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres
Liwei Zhao,
Hongji Li,
Mingji Li,
Sheng Xu,
Cuiping Li,
Changqing Qu,
Lijun Zhang and
Baohe Yang
Applied Energy, 2016, vol. 162, issue C, 197-206
Abstract:
Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593Fg−1 at a current density of 10Ag−1. The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132Whkg−1 at a high power density of 3.17kWkg−1. The high energy density is attributed to the widened operation window ranging from 0 to 3.0V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.
Keywords: Hybrid capacitors; Chemical vapor deposition; Graphene; Carbon hollow spheres; Lithium-ion storage (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915013203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:197-206
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.093
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().