Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor
L. Merotto,
C. Fanciulli,
R. Dondè and
S. De Iuliis
Applied Energy, 2016, vol. 162, issue C, 346-353
Abstract:
The recent advances in miniaturized mechanical devices open exciting new opportunities for combustion, especially in the field of micro power generation, allowing the development of power-supply devices with high specific energy. The development of a device based on a catalytic combustor coupled with thermoelectric modules is particularly appealing for combustion stability and safety. Furthermore, when implemented in micro/meso scale devices, catalytic combustion allows full utilization of hydrocarbon fuel’s high energy densities, but at notably lower operating temperatures than those typical of traditional combustion. These conditions are more suitable for coupling with conventional thermoelectric modules since they prevent the modules’ degradation.
Keywords: Thermo-electric generator; Portable energy production; Meso-scale catalytic combustor; Propane catalytic combustion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915013069
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:346-353
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.079
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().