EconPapers    
Economics at your fingertips  
 

Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment

Yi Wang, Jing-Chun Feng, Xiao-Sen Li, Yu Zhang and Gang Li

Applied Energy, 2016, vol. 162, issue C, 372-381

Abstract: The Pilot-Scale Hydrate Simulator (PHS), a three-dimensional 117.8L pressure vessel, is applied to study the methane hydrate dissociation below the quadruple point in the sandy sediment in this work. The hydrate dissociation behaviors below and above the quadruple point are compared. The influences of the production pressure, the initial reservoir temperature, and the water saturation on the hydrate dissociation below the quadruple point by depressurization are investigated. The results indicate that methane hydrate dissociation below the quadruple point causes ice formation, which can strongly enhance the dissociation rate of the hydrate. The water generated from hydrate dissociation below the quadruple point may immediately form ice and the pore water in the reservoir turns into ice at the same time. Meanwhile, the hydrate dissociation below the quadruple point consumes the latent heat released by ice formation. The lower production pressure causes the higher driving force for hydrate dissociation and ice formation, which results in the higher dissociation rate of the hydrate. In addition, when the production pressure is lower than the quadruple point, a lower initial reservoir temperature is favorable for ice formation, which leads to the higher hydrate dissociation rate. The experimental results from hydrate dissociation in the ‘water-saturated’ reservoir and ‘gas-saturated’ reservoir indicate that the rate of ice formation is slower in the ‘water-saturated’ reservoir.

Keywords: Methane hydrate; Dissociation; Large scale; Depressurization; Quadruple point; Sandy sediment (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915013264
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:372-381

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.10.099

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:372-381