Forecasting the EV charging load based on customer profile or station measurement?
Mostafa Majidpour,
Charlie Qiu,
Peter Chu,
Hemanshu R. Pota and
Rajit Gadh
Applied Energy, 2016, vol. 163, issue C, 134-141
Abstract:
In this paper, forecasting of the Electric Vehicle (EV) charging load has been based on two different datasets: data from the customer profile (referred to as charging record) and data from outlet measurements (referred to as station record). Four different prediction algorithms namely Time Weighted Dot Product based Nearest Neighbor (TWDP-NN), Modified Pattern Sequence Forecasting (MPSF), Support Vector Regression (SVR), and Random Forest (RF) are applied to both datasets. The corresponding speed, accuracy, and privacy concerns are compared between the use of the charging records and station records. Real world data compiled at the outlet level from the UCLA campus parking lots are used. The results show that charging records provide relatively faster prediction while putting customer privacy in jeopardy. Station records provide relatively slower prediction while respecting the customer privacy. In general, we found that both datasets generate comparable prediction error.
Keywords: Electric Vehicle; Privacy; Time series; Load forecasting (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915014348
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:163:y:2016:i:c:p:134-141
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.184
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().