Load forecasting of supermarket refrigeration
Lisa Buth Rasmussen,
Peder Bacher,
Henrik Madsen,
Henrik Aalborg Nielsen,
Christian Heerup and
Torben Green
Applied Energy, 2016, vol. 163, issue C, 32-40
Abstract:
This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different methods for predicting the regimes are tested. The dynamic relation between the weather and the load is modeled by simple transfer functions and the non-linearities are described using spline functions. The results are thoroughly evaluated and it is shown that the spline functions are suitable for handling the non-linear relations and that after applying an auto-regressive noise model the one-step ahead residuals do not contain further significant information.
Keywords: Refrigeration; Load forecasting; Numerical weather predictions; Adaptive models; Base splines; Time series analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915012738
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:163:y:2016:i:c:p:32-40
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.046
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().