EconPapers    
Economics at your fingertips  
 

Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost

Li Chai and Christopher M. Saffron

Applied Energy, 2016, vol. 163, issue C, 387-395

Abstract: In the present study, the biomass upgrading depot capacity and biomass feedstock moisture were optimized to obtain the minimum production cost at the depot gate for the production of woody biofuels. Three technology scenarios are considered in this study: (1) conventional pellets (CP), (2) modestly torrefied pellets (TP1) and (3) severely torrefied pellets (TP2). TP1 has the lowest cost of $7.03/GJLHV at a moisture of 33wt.% and a depot size of 84MWLHV. The effects of climatic conditions and biomass field conditions were also studied for three scenarios. In humid regions of Michigan, TP2 is more economical than other scenarios because of the increased production of combustible gas. The three scenarios have similar sensitivities to biomass field conditions.

Keywords: Pelletization; Torrefaction; Depot scale; Biomass moisture; Production cost (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915014592
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:163:y:2016:i:c:p:387-395

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.11.018

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:163:y:2016:i:c:p:387-395