EconPapers    
Economics at your fingertips  
 

A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems

Dian-ce Gao, Shengwei Wang, Kui Shan and Chengchu Yan

Applied Energy, 2016, vol. 164, issue C, 1028-1038

Abstract: Low delta-T syndrome widely exists in the existing air-conditioning systems and results in increased energy consumption. This paper presents a system-level fault detection and diagnosis method (FDD) to detect and diagnose the low delta-T syndrome resulted from the performance degradation of AHUs system and plate heat exchanger system in a complex HVAC system. Performance indices are introduced to characterize the health status (normal or faulty) of the system. Reference models are developed to generate the benchmarks of the performance indices under fault-free conditions. In order to mitigate the impact of the model fitting uncertainty of the reference models and the measurement uncertainty of the performance indices, adaptive thresholds are adopted using t-statistic approach to identify the health conditions of the performance indices. The proposed method was validated in a dynamic simulation platform built based on a real complex HVAC system studied. The results show that the proposed FDD strategy can successfully detect the low delta-T syndrome, identify the related faults and quantitatively evaluate of the faults severity.

Keywords: Chilled water system; Low delta-T syndrome; Fault detection and diagnosis; Adaptive threshold (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915002020
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:164:y:2016:i:c:p:1028-1038

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.02.025

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:1028-1038