EconPapers    
Economics at your fingertips  
 

Design analysis of supercritical carbon dioxide recuperator

Jiangfeng Guo

Applied Energy, 2016, vol. 164, issue C, 27 pages

Abstract: The segmental design method is employed to accurately capture the drastic variations of properties in the supercritical carbon dioxide (S-CO2) recuperator. The local heat capacity flow rates of both fluids have drastic changes in sub-heat exchangers even the mass flow rates of both fluids remain unchanged. When the heat duty is given, the local heat conductance, local temperature difference, local effectiveness and local entransy dissipation number have extremums, which appear in the vicinity of the heat capacity rate ratio is one. The heat transfer performance of recuperator improves at the expense of heat conductance. When the total heat conductance is fixed, there exist the maximum local heat flux rates, and the local effectiveness tends to be constant after the local heat capacity rate ratio reaches one, the local entransy dissipation number has the relatively coherent performance behavior in the sub-heat exchangers. The local heat capacity rate ratio has crucial influences on the heat transfer performance of recuperator, and the design parameters must be considered carefully in the design of S-CO2 recuperator.

Keywords: Heat exchanger; Supercritical carbon dioxide (S-CO2); Effectiveness; Entransy dissipation number; Heat transfer; Heat capacity rate ratio (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915014993
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:164:y:2016:i:c:p:21-27

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.11.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:21-27