Efficient outdoor performance of esthetic bifacial a-Si:H semi-transparent PV modules
Seung Yeop Myong and
Sang Won Jeon
Applied Energy, 2016, vol. 164, issue C, 312-320
Abstract:
We developed bifacial transparent back contact (TBC) hydrogenated amorphous silicon (a-Si:H) semi-transparent glass-to-glass photovoltaic (PV) modules with emotionally inoffensive and esthetically pleasing colors have been developed by combining the transparent back contact and color of the back glass. Due to the high series resistance of the transparent back contact, the bifacial TBC a-Si:H semi-transparent PV modules had a lower rated power after light soaking than the monofacial opaque (metal) back contact (OBC) a-Si:H semi-transparent PV modules fabricated using the additional laser scribing patterns. However, the TBC a-Si:H semi-transparent PV module produced a higher annual electrical energy output than the OBC a-Si:H semi-transparent PV module thanks to bifacial power generation during the outdoor field test. In particular, the performance ratio of the TBC a-Si:H semi-transparent PV module measured at the optimal tilt angle of 30° surpassed its simulated prediction by a drastically high value of 124.5%. At a higher tilt angle of 85°, bifacial power generation produced a higher deviation between the measured and simulated annual performance of the TBC a-Si:H semi-transparent PV module. Since the reflected albedo has a tendency to increase toward higher tilt angles, bifacial power generation can compensate for the loss of lower direct plane-of-array irradiation at a higher tilt angle. Therefore, the TBC a-Si:H semi-transparent PV module is suitable for the vertically mounted building integrated photovoltaic modules for use in curtain walls, façades, roofs and traffic noise barriers by harvesting reflected and illuminated light.
Keywords: Amorphous silicon; Semi-transparent; Bifacial; Building integrated photovoltaic module (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915015135
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:164:y:2016:i:c:p:312-320
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.11.063
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().