EconPapers    
Economics at your fingertips  
 

Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system

Zhonghao Rao, Qingchao Wang and Congliang Huang

Applied Energy, 2016, vol. 164, issue C, 659-669

Abstract: In order to extend the cycle life of power battery pack within electric vehicle, a phase change material (PCM)/mini-channel coupled power battery thermal management (BTM) system, as well as the three-dimensional battery thermal model, was designed in this paper. The effect of various influencing factors, especially mass flow rate of water, phase change temperature and thermal conductivity of PCM, were investigated numerically. The results showed that the liquid volume fraction of PCM was greatly influenced by the thermal conductivity and the phase change temperature of PCM. The increasing number of channels results in a decrease of the maximum temperature (TMax) and maximum temperature difference (ΔT) of battery packs. The optimal phase change temperature and thermal conductivity of PCM were 308.15K and 0.6Wm−1K−1 respectively when the number of channel was eight and the mass flow rate was 8×10−4kgs−1. Moreover, a maximum temperature of 320.6K was predicted for the PCM/mini-channel coupled BTM system, while a maximum temperature of 335.4K was predicted for the PCM-based BTM system. Additionally, the PCM/mini-channel coupled BTM system presented more effective thermal performance and the research will be a clear indicator for the design of the PCM/liquid coupled BTM system.

Keywords: Phase change material; Mini-channel; Battery thermal management; Thermal performance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (51)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915015949
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:164:y:2016:i:c:p:659-669

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.12.021

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:659-669